Energieausweis für Nicht-Wohngebäude

OIB ÖSTERREICHISCHES

OIB-Richtlinie 6 Ausgabe: April 2019

BEZEICHNUNG	Kindergarten Enzersdorf		Umsetzungsstand	Planung
Gebäude(-teil)	Kindergarte	en	Baujahr	2022
Nutzungsprofil	Bildungseir	nrichtungen	Letzte Veränderung	
Straße	Klosterweg	94	Katastralgemeinde	Enzersdorf im Thale
PLZ/Ort	2032	Enzersdorf im Thale	KG-Nr.	09011
Grundstücksnr.	5		Seehöhe	265 m

HWB_{Ref}: Der **Referenz-Heizwärmebedarf** ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

 $\begin{tabular}{ll} \bf WWWB: Der Warmwasser wärmebedarf ist in Abhängigkeit der Gebäude kategorie als flächenbezogener Defaultwert festgelegt. \end{tabular}$

HEB: Beim **Heizenergiebedarf** werden zusätzlich zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

KB: Der **Kühlbedarf** ist jene Wärmemenge, welche aus den Räumen abgeführt werden muss, um unter der Solltemperatur zu bleiben. Er errechnet sich aus den nicht nutzbaren inneren und solaren Gewinnen.

BefEB: Beim **Befeuchtungsenergiebedarf** wird der allfällige Energiebedarf zur Befeuchtung dargestellt.

KEB: Beim **Kühlenergiebedarf** werden zusätzlich zum Kühlbedarf die Verluste des Kühlsystems und der Kältebereitstellung berücksichtigt.

RK: Das Referenzklima ist ein virtuelles Klima. Es dient zur Ermittlung von Energiekennzahlen

BelEB: Der **Beleuchtungsenergiebedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht dem Energiebedarf zur nutzungsgerechten Beleuchtung.

BSB: Der **Betriebsstrombedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht der Hälfte der mittleren inneren Lasten.

EEB: Der **Endenergiebedarf** umfasst zusätzlich zum Heizenergiebedarf den jeweils allfälligen Betriebsstrombedarf, Kühlenergiebedarf und Beleuchtungsenergiebedarf, abzüglich allfälliger Endenergieerträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

 \mathbf{f}_{GEE} : Der **Gesamtenergieeffizienz-Faktor** ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der **Primärenergiebedarf** ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren ($PEB_{ern.}$) und einen nicht erneuerbaren ($PEB_{n.ern.}$) Anteil auf.

 $\textbf{CO}_2\textbf{eq:} \ Gesamte \ dem \ Endenergiebedarf \ zuzurechnenden \ \ddot{\textbf{a}} \textbf{quivalenten Kohlendioxidemissionen} \ (\text{Treibhausgase}), \ einschließlich jener \ für \ Vorketten.$

SK: Das **Standortklima** ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU vom 19. Mai 2010 über die Gesamtenergieeffizienz von Gebäuden bzw. 2018/844/EU vom 30. Mai 2018 und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist für Strom: 2013-09 – 2018-08, und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Nicht-Wohngebäude

OIB-Richtlinie 6 Ausgabe: April 2019

GEBÄUDEKENNDATEN				EA	A-Art:
Brutto-Grundfläche (BGF)	533,0 m²	Heiztage	250 d	Art der Lüftung	Fensterlüftung
Bezugsfläche (BF)	426,4 m²	Heizgradtage	3741 Kd	Solarthermie	- m²
Brutto-Volumen (V _B)	2.387,8 m³	Klimaregion	N	Photovoltaik	10,0 kWp
Gebäude-Hüllfläche (A)	1.698,0 m²	Norm-Außentemperatur	-14,6 °C	Stromspeicher	- kWh
Kompaktheit (A/V)	0,71 1/m	Soll-Innentemperatur	22,0 °C	WW-WB-System (primär)	kombiniert
charakteristische Länge (ℓ_c)	1,41 m	mittlerer U-Wert	0,220 W/m ² K	WW-WB-System (sekundär, opt.)	-
Teil-BGF	- m²	LEK _T -Wert	19,49	RH-WB-System (primär)	Wärmepumpe
Teil-BF	- m²	Bauweise	schwere	RH-WB-System (sekundär, opt.)	-
Teil-V _B	- m³			Kältebereitstellungs-System	-

WÄRME- UND ENERGIEBEDA	Nachweis über den Gesamtenergieeffizenzfaktor						
	Ergebnisse Ar						
Referenz-Heizwärmebedarf	$HWB_{Ref,RK} =$	54,3 kWh/m²a	entspricht	$HWB_{Ref,RK,zul} =$	74,9 kWh/m²a		
Heizwärmebedarf	HWB _{RK} =	58,5 kWh/m²a					
Außeninduzierter Kühlbedarf	KB* _{RK}	0,6 kWh/m³a	entspricht	KB* _{RK,zul} =	1,0 kWh/m³a		
Endenergiebedarf	EEB _{RK} =	34,8 kWh/m²a					
Gesamtenergieeffizienz-Faktor	$f_{GEE,RK} =$	0,57	entspricht	$f_{GEE,RK,zul} =$	0,75		
Erneuerbarer Anteil	-		entspricht	Punkt 5.2.3 a, l	O, C		

WÄRME- UND ENERGIEBEDARF (Standor	tklima)				
Referenz-Heizwärmebedarf	$Q_{h,Ref,SK} =$	33.750	kWh/a	HWB _{Ref,SK} =	63,3 kWh/m²a
Heizwärmebedarf	Q _{h,SK} =	38.173	kWh/a	HWB _{SK} =	71,6 kWh/m²a
Warmwasserwärmebedarf	Q _{tw} =	1.434	kWh/a	WWWB =	2,7 kWh/m²a
Heizenergiebedarf	Q _{HEB,SK} =	11.293	kWh/a	HEB _{SK} =	21,20 kWh/m²a
Energieaufwandszahl Warmwasser				e _{AWZ,WW} =	1,04
Energieaufwandszahl Raumheizung				e _{AWZ,RH} =	0,29
Energieaufwandszahl Heizen				e _{AWZ,H} =	0,32
Betriebsstrombedarf	Q _{BSB} =	1.121	kWh/a	BSB =	2,1 kWh/m²a
Kühlbedarf	Q _{KB,SK} =	5.446	kWh/a	KB _{SK} =	10,2 kWh/m²a
Kühlenergiebedarf	Q _{KEB,SK} =	0	kWh/a	KEB _{SK} =	0,0 kWh/m²a
Energieaufwandszahl Kühlen				e _{AWZ,K} =	0,00
Befeuchtungsenergiebedarf	$Q_{BefEB,SK} =$	0	kWh/a	BefEB _{SK} =	0,0 kWh/m²a
Beleuchtungsenerergiebedarf	$Q_{BelEB} =$	10.575	kWh/a	BelEB =	19,8 kWh/m²a
Endenergiebedarf	Q _{EEB,SK} =	20.167	kWh/a	EEB _{SK} =	37,8 kWh/m²a
Primärenergiebedarf	Q _{PEB,SK} =	32.872	kWh/a	PEB _{SK} =	61,7 kWh/m²a
Primärenergiebedarf nicht erneuerbar	$Q_{PEBn.ern.,SK} =$	20.570	kWh/a	PEB _{n.ern.,SK} =	38,6 kWh/m²a
Primärenergiebedarf erneuerbar	Q _{PEBern.,SK} =	12.302	kWh/a	PEB _{ern.,SK} =	23,1 kWh/m²a
äquivalente Kohlendioxidemissionen	$Q_{CO2eq,SK} =$	4.578	kg/a	CO _{2eq,SK} =	8,6 kg/m²a
Gesamtenergieeffizienz-Faktor				$f_{GEE,SK} =$	0,57
Photovoltaik-Export	Q _{PVE,SK} =	6.006	kWh/a	PVE _{EXPORT,SK} =	11,3 kWh/m²a

ERSTELLT			
GWR-Zahl		ErstellerIn	Stadtgemeinde Hollabrunn
Ausstellungsdatum	06.04.2022	Unterschrift	
Gültigkeitsdatum	05.04.2032		
Geschäftszahl	22-01		

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

Kindergarten Enzersdorf

mit Betonzwischendecke und Dachboden Klosterweg 94 A 2032, Enzersdorf im Thale

VerfasserIn

Stadtgemeinde Hollabrunn DI Sagbauer ArchiPHYSIK - www.archiphysik.com Hauptplatz 1 2020 Hollabrunn

T 02952 2102 245/244

E bauverwaltung@hollabrunn.gv.at

Bericht

Kindergarten Enzersdorf

Kindergarten Enzersdorf

mit Betonzwischendecke und Dachboden

Klosterweg 94

2032 Enzersdorf im Thale

Katastralgemeinde: 09011 Enzersdorf im Thale

Einlagezahl:

Grundstücksnummer: 5

GWR Nummer:

Planunterlagen

Datum: 31.03.2022 Nummer: Einr. 02

VerfasserIn der Unterlagen

Stadtgemeinde Hollabrunn T 02952 2102 245/244

Bauamt F
DI Sagbauer ArchiPHYSIK - www.archiphysik.com M

Hauptplatz 1 E bauverwaltung@hollabrunn.gv.at

2020 Hollabrunn
ErstellerIn Nummer:

Angewandte Berechnungsverfahren

Bauteile ON B 8110-6-1:2019-01-15
Fenster EN ISO 10077-1:2018-02-01

Unkonditionierte Gebäudeteile vereinfacht, ON B 8110-6-1:2019-01-15 Erdberührte Gebäudeteile vereinfacht, ON B 8110-6-1:2019-01-15

Wärmebrücken pauschal, ON B 8110-6-1:2019-01-15, Formel (11)

Verschattungsfaktoren vereinfacht, ON B 8110-6-1:2019-01-15

 Heiztechnik
 ON H 5056-1:2019-01-15

 Raumlufttechnik
 ON H 5057-1:2019-01-15

 Beleuchtung
 ON H 5059-1:2019-01-15

 Kühltechnik
 ON H 5058-1:2019-01-15

Diese Lokalisierung entspricht der OIB Richtlinie 6:2019, es werden die Berechnungsnormen Stand 2019 verwendet, die Anforderungen entsprechen den Höchstwerten der Richtlinie 6, 04-2019 ab dem Jahr 2021

Grundfläche und Volumen

Brutto-Grundfläche u	nd Brutto-Volume	n		BGF [m²]	V [m³]
Kindergarten		beheizt		533,00	2.387,84
Kindergarten beheizt					
	Formel		Höhe [m]	BGF [m²]	V [m³]
Erdgeschoß					
Erdgeschoss	1 x 533		4,48	533,00	2.387,84
Summe Kindergarten				533,00	2.387,84

	Holzalufenster 107x133						Neubau
AF	Fenster						
		Länge	Ψ	g	Fläche	%	U
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	0,98	69,10	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,44	30,90	1,05
	Edelstahl	4,00	0,050				
		•	•	vorh.	1,42		0,95

	Holzalufenster 183x133						Neubau
AF	Fenster						
		Länge	Ψ	g	Fläche	%	U
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	1,75	72,00	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,68	28,00	1,05
	Edelstahl	7,62	0,050				
				vorh.	2,43		0,95

A =	Holzalufenster 197x193									
AF		Länge	Ψ	g	Fläche	%	U			
		m	W/mK	-	m²		W/m²K			
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	2,89	76,00	0,70			
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,91	24,00	1,05			
	Edelstahl	10,26	0,050							
				vorh.	3,80		0,92			

	Holzalufenster 247x193						Neubau
AF							
		Länge	Ψ	g	Fläche	%	U
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	3,75	78,80	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,01	21,20	1,05
	Edelstahl	11,26	0,050				
				vorh.	4,77		0,89

Holzalufenster 297x193

Neubau

	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	4,62	80,60	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,11	19,40	1,05
Edelstahl	12,26	0,050				
			vorh.	5,73		0.87

Holzalufenster 300x195

Neubau

 AF

	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	4,73	80,80	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,13	19,20	1,05
Edelstahl	12,40	0,050				
			vorh.	5,85		0,87

Holzalufenstertüre 107x223

Neubau

AF	Türe						
		Länge	Ψ	g	Fläche	%	U
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	1,77	74,00	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,62	26,00	1,05
	Edelstahl	5,80	0,050				
				vorh.	2,39		0.91

Holzalufenstertüre 197x223

Neubau

Türe

	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	3,39	77,20	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,00	22,80	1,05
Edelstahl	11,46	0,050				
			vorh.	4,39		0,91

Holzalufenstertüre 297x223

Neubau

AF	Türe
----	------

 * =: =						
	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
 3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	5,42	81,80	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,20	18,20	1,05
Edelstahl	13,46	0,050				
			vorh.	6,62		0,87

Türen unverglast, gegen Außenluft 107x223

Neubau

 AT

	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
Alu gedämmt				2,38	100,00	0,69
Glasrandverbund	5,46	0,050				
			vorh.	2.38		0.80

0025	Decke gg. Dachboden ungeh.			Neubau
DGD	O-U, Betondecke mit Dachdämmelement			
		d [m]	λ [W/mK]	R [m2K/W]
1	steinopor 750 (110+10mm)	0,1200	0,040	2,950
2	steinopor 700 EPS-W20 (200mm)	0,2000	0,038	5,263
3	PAE-Folie	0,0002	0,230	0,001
4	Stahlbeton-Decke (20cm)	0,2000	2,300	0,087
5	Innenputz (Gips)	0,0200	0,700	0,029
	Wärmeübergangswiderstände			0,200
		0,5400	RT =	8,530
			U =	0 117

A1		AW Holzfassade			Neubau
Awh		A-I			
	Lage		d [m]	λ [W/mK]	R [m2K/W]
1		Nutzholz (525 kg/m³ - zB Lärche) - gehobelt, techn. get	0,0250	0,130	0,192
2		Luftschicht stehend, Wärmefluss horizontal 20 < d <=	0,0250	0,147	0,170
3.0	_	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, luftgetro	0,1600	0,120	1,333
		Breite: 0,05 m Achsenabstand: 0,80 m			
3.1		Glaswolle MW(GW)-W (24 kg/m³)	0,1600	0,036	4,444
5		POROTHERM 25-38	0,2500	0,259	0,965
6		Gipsputze (1000 kg/m³)	0,0100	0,400	0,025
		Wärmeübergangswiderstände			0,260
		RTo=4,608 m2K/W; RTu=4,501 m2K/W;	0,2100	RT = U =	4,554 0,220

A2	Ziegelwand			Neubau
AW	A-I, monolithische Ziegelwand			
		d [m]	λ [W/mK]	R [m2K/W]
1	Leichtputz	0,0200	0,600	0,033
2	Porotherm 50-20 H.i Plan	0,5000	0,090	5,556
3	Putzmörtel (Gips)	0,0100	0,700	0,014
	Wärmeübergangswiderstände			0,170
		0,5300	RT =	5,773
			U =	0.173

A3	Außenwand Ziegel/Polystyrol			Neubau
AW	A-I			
		d [m]	λ [W/mK]	R [m2K/W]
1	Silikonharzputz	0,0020	0,700	0,003
2	EPS-F grau/schwarz (15.8 kg/m³)	0,1600	0,032	5,000
3	Kleber mineralisch	0,0050	0,800	0,006
4	POROTHERM 25-38	0,2500	0,259	0,965
5	Gipsputze (1000 kg/m³)	0,0100	0,400	0,025
	Wärmeübergangswiderstände			0,170
		0,4270	RT =	6,169
			U =	0,162

B1	Bodenplatte Neu				Neubau
EBu	U-O, gegen Erdreich				
			d [m]	λ [W/mK]	R [m2K/W]
1	Stahlbeton (R = 2300)		0,2000	2,300	0,087
2	Abdichtung		0,0010	0,230	0,004
3	Schüttung (Polystyrolschaumstoff-Partikel)		0,1900	0,050	3,800
4	EPS-T 1000 (17 kg/m³)		0,0300	0,038	0,789
5	PAE-Folie		0,0010	0,230	0,004
6	Estrich (Zement-)	F	0,0650	1,400	0,046
7	Parkettboden		0,0150	0,170	0,088
	Wärmeübergangswiderstände				0,170
			0,5020	RT =	4,988
	F = Schicht mit Flächenheizung			11 =	0.200

D1		Flachdach Neu			Neubau
AD		O-U, Warmdach			
			d [m]	λ [W/mK]	R [m2K/W]
	1	Schüttung (Kies 16/32)	0,1000	0,700	0,143
	2	EPDM Baufolie, Gummi	0,0040	0,170	0,024
	3	EPS-W 25 (23 kg/m³)	0,2000	0,036	5,556
	4	Polymerbitumen-Dichtungsbahn	0,0040	0,230	0,017
	5	Stahlbeton (R = 2300)	0,2500	2,300	0,109
	6	Spachtel - Gipsspachtel	0,0050	0,800	0,006
		Wärmeübergangswiderstände			0,140
			0,5630	RT =	5,995
				U =	0,167

DAI 0		DAI 01 a Holzsparren-Steildach			Neubau
ADh		O-U			
	Lage		d [m]	λ [W/mK]	R [m2K/W]
1		Tondachziegel (2000 kg/m³)	0,0250		
2.0	_	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,09 m Achsenabstand: 0,62 m	0,0300		
2.1		Luftschicht stehend, Wärmefluss nach oben 26 < d	0,0300		
3.0	I	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,0500		
3.1		Luftschicht stehend, Wärmefluss nach oben 46 < d	0,0500		
4		Holzfaserplatte porös bituminiert (250 kg/m³)	0,0200	0,057	0,351
5.0	_	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,1000	0,120	0,833
5.1		Glaswolle MW(GW)-W (18 kg/m³)	0,1000	0,038	2,632
6.0	I	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,2400	0,120	2,000
6.1		Glaswolle MW(GW)-W (18 kg/m³)	0,2400	0,038	6,316
7		Holzspanplatten innen (650 kg/m³)	0,0220	0,130	0,169
8		Dampfbremse PE	0,0002	0,500	0,000
9.0	_	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,0600	0,120	0,500
9.1		Glaswolle MW(GW)-W (18 kg/m³)	0,0600	0,038	1,579
10		Gipskartonplatte (900 kg/m³)	0,0150	0,250	0,060
11		Gipskartonplatte (900 kg/m³)	0,0150	0,250	0,060
		Wärmeübergangswiderstände			0,200
		RTo=10,695 m2K/W; RTu=10,244 m2K/W;	0,5770	RT = U =	10,469 0,096

DAI 1		DAI 01 a Holzsparren-Flachgeneigtes Dach			Neubau
ADh		O-U			
	Lage		d [m]	λ [W/mK]	R [m2K/W]
1		Blecheindeckung	0,0020		
2		Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc	0,0250		
3.0	1	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,0500		
3.1		Luftschicht stehend, Wärmefluss nach oben 46 < d	0,0500		
4		Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc	0,0250		

5.0	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc	0,2400	0,120	2,000
	Breite: 0,06 m Achsenabstand: 0,62 m			
5.1	Glaswolle MW(GW)-W (18 kg/m³)	0,2400	0,038	6,316
6	Dampfbremse PE	0,0002	0,500	0,000
7.0	 Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc	0,0600	0,120	0,500
	Breite: 0,06 m Achsenabstand: 0,62 m			
7.1	Luftschicht stehend, Wärmefluss nach oben 56 < d	0,0600	0,375	0,160
8	Gipskartonplatte (900 kg/m³)	0,0150	0,250	0,060
9	Gipskartonplatte (900 kg/m³)	0,0150	0,250	0,060
	Wärmeübergangswiderstände			0,200
	RTo=5,833 m2K/W; RTu=5,694 m2K/W;	0,4320	RT =	5,763
			U =	0,174

I1	Ziegelwand gg. unbeheizt			Neubau
IW	A-I, monolithische Ziegelwand			
		d [m]	λ [W/mK]	R [m2K/W]
1	Putzmörtel (Gips)	0,0100	0,700	0,014
2	POROTHERM 25-38	0,2500	0,259	0,965
3	Putzmörtel (Gips)	0,0100	0,700	0,014
	Wärmeübergangswiderstände			0,260
		0,2700	RT =	1,253
			U =	0.798

I1	Ziegelwand gg. unbeheizt			Neubau
WGU	A-I, monolithische Ziegelwand			
		d [m]	λ [W/mK]	R [m2K/W]
1	Steinwolle MW(SW)-T (130 kg/m³)	0,0200	0,039	0,513
2	Porotherm 50-20 H.i Plan	0,5000	0,090	5,556
3	Putzmörtel (Gips)	0,0100	0,700	0,014
	Wärmeübergangswiderstände			0,260
		0,5300	RT =	6,343
			U =	0,158

Materialliste

Bauteilschichten	Bauphysik	Ökodaten		Quelle
Abdichtung	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	WSK
Blecheindeckung	d 0,0020 m λ 60,000 W/mk ρ 7.800,0 kg/m²	1	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	WSK
Dampfbremse PE	$\begin{array}{cccc} d & 0,0002 \text{ m} \\ \lambda & 0,500 \text{ W/mk} \\ \rho & 650,0 \text{ kg/m}^2 \end{array}$		84,67 MJ/kg 2,634 kg CO2/kg 0,0103 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142712508
EPDM Baufolie, Gummi	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	83,77 MJ/kg 2,594 kg CO2/kg 0,0107 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142684397
EPS-F grau/schwarz (15.8 kg/m³)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	98,90 MJ/kg 4,169 kg CO2/kg 0,0149 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\mathcal{2}\$ 2142714937
EPS-T 1000 (17 kg/m³)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l l	98,90 MJ/kg 4,169 kg CO2/kg 0,0149 kg SO2/kg	baubook baubook_daten_20210128_V2_110.xml \$\mathcal{3}\$ 2142714931
EPS-W 25 (23 kg/m³)	$\begin{array}{ccc} d & 0,2000 \text{ m} \\ \lambda & 0,036 \text{ W/mk} \\ \rho & 23,0 \text{ kg/m}^2 \end{array}$	1	98,90 MJ/kg 4,169 kg CO2/kg 0,0149 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\mathfrak{C}\$ 2142714927
Estrich (Zement-)	d 0,0650 m λ 1,400 W/mk ρ 2.000,0 kg/m²	1	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	
Gipskartonplatte (900 kg/m³)	d 0,0150 m λ 0,250 W/mk ρ 900,0 kg/m²	l l	4,83 MJ/kg 0,226 kg CO2/kg 0,0007 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\mathfrak{T}\$ 2142714820
Gipsputze (1000 kg/m³)	d 0,0100 m λ 0,400 W/mk ρ 1.000,0 kg/m²	l l	2,51 MJ/kg 0,168 kg CO2/kg 0,0005 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\mathfrak{\text{3}}\$ 2142714817
Glaswolle MW(GW)-W (18 kg/m³)	d 0,2400 m λ 0,038 W/mk ρ 18,0 kg/m²	l l	46,25 MJ/kg 2,454 kg CO2/kg 0,0153 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142714917
Glaswolle MW(GW)-W (18 kg/m³)	d 0,0600 m λ 0,038 W/mk ρ 18,0 kg/m²	1	46,25 MJ/kg 2,454 kg CO2/kg 0,0153 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142714917
Glaswolle MW(GW)-W (18 kg/m³)	d 0,1000 m λ 0,038 W/mk ρ 18,0 kg/m²	1	46,25 MJ/kg 2,454 kg CO2/kg 0,0153 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142714917
Glaswolle MW(GW)-W (24 kg/m³)	d 0,1600 m λ 0,036 W/mk ρ 24,0 kg/m²	1	46,25 MJ/kg 2,454 kg CO2/kg 0,0153 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142714918
Holzfaserplatte porös bituminiert (250 kg/	d 0,0200 m λ 0,057 W/mh ρ 250,0 kg/m²		16,49 MJ/kg -0,729 kg CO2/kg 0,0041 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\rightarrow\$ 2142715804
Holzspanplatten innen (650 kg/m³)	d 0,0220 m λ 0,130 W/m ^k ρ 650,0 kg/m ²		8,30 MJ/kg -1,354 kg CO2/kg 0,0017 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\rightarrow\$ 2142715122
Innenputz (Gips)	d 0,0200 m λ 0,700 W/mk ρ 1.200,0 kg/m²	PEIne GWP100 Summe	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	WSK
Kleber mineralisch	d 0,0050 m λ 0,800 W/mk ρ 1.800,0 kg/m²	PEIne GWP100 Summe	2,01 MJ/kg 0,288 kg CO2/kg 0,0009 kg SO2/kg	öbox oebox_daten_20080212_09.xml → 2142684362
Leichtputz	d 0,0200 m λ 0,600 W/mk ρ 1.200,0 kg/m²	PEIne GWP100 Summe	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	WSK ON V 31, Wien 2001
Luftschicht stehend, Wärmefluss horizontal 20 < d <= 25 mm	d 0,0250 m λ 0,147 W/mh ρ 1,2 kg/m²	1	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\mathfrak{\text{3}}\$ 2142684622

Materialliste

Bauteilschichten	Bauphysik	Ökodaten		Quelle
Luftschicht stehend, Wärmefluss nach oben 26 < d <= 30 mm	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PEIne GWP100 Summe AP	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142684580
Luftschicht stehend, Wärmefluss nach oben 46 < d <= 50 mm	d 0,0500 m λ 0,313 W/mK ρ 1,2 kg/m²	PEIne GWP100 Summe AP	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\mathfrak{C}\$ 2142684576
Luftschicht stehend, Wärmefluss nach oben 56 < d <= 60 mm	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PEIne GWP100 Summe AP	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	baubook baubook_daten_20220823_V2_110.xml \$\igcsig 2142684574\$
Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, luftgetrocknet	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PEIne GWP100 Summe AP	1,74 MJ/kg -1,405 kg CO2/kg 0,0006 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcream{3}\$ 2142715289
Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisch getrocknet	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PEIne GWP100 Summe AP	2,52 MJ/kg -1,500 kg CO2/kg 0,0009 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\frac{1}{3}\$ 2142715290
Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisch getrocknet	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PEIne GWP100 Summe AP	2,52 MJ/kg -1,500 kg CO2/kg 0,0009 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\frac{1}{3}\$ 2142715290
Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisch getrocknet	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PEIne GWP100 Summe AP	2,52 MJ/kg -1,500 kg CO2/kg 0,0009 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcsig 2142715290\$
Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisch getrocknet	d 0,0600 m λ 0,120 W/mK ρ 475,0 kg/m²	PEIne GWP100 Summe AP	2,52 MJ/kg -1,500 kg CO2/kg 0,0009 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142715290
Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisch getrocknet	d 0,0250 m λ 0,120 W/mK ρ 475,0 kg/m²	PEIne GWP100 Summe AP	2,52 MJ/kg -1,500 kg CO2/kg 0,0009 kg SO2/kg	baubook baubook_daten_20220823_V2_110.xml \$\igcup\$ 2142715290
Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisch getrocknet	d 0,0300 m λ 0,120 W/mK ρ 475,0 kg/m²	PEIne GWP100 Summe AP	2,52 MJ/kg -1,500 kg CO2/kg 0,0009 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcup\$ 2142715290
Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisch getrocknet	d 0,1000 m λ 0,120 W/mK ρ 475,0 kg/m²	PEIne GWP100 Summe AP	2,52 MJ/kg -1,500 kg CO2/kg 0,0009 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcreak_2142715290\$
Nutzholz (525 kg/m³ - zB Lärche) - techn. getrocknet	d 0,0250 m λ 0,130 W/mK ρ 525,0 kg/m²	PEIne GWP100 Summe AP	3,95 MJ/kg -1,582 kg CO2/kg 0,0014 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\igcreak_2142715108\$
PAE-Folie	d 0,0002 m λ 0,230 W/mK ρ 1.500,0 kg/m²	PEIne GWP100 Summe AP	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	WSK
PAE-Folie	d 0,0010 m λ 0,230 W/mK ρ 1.500,0 kg/m²	PEIne GWP100 Summe AP	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	WSK
Parkettboden	d 0,0150 m λ 0,170 W/mK ρ 700,0 kg/m²	PEIne GWP100 Summe AP	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	WSK
Polymerbitumen-Dichtungsbahn	d 0,0040 m λ 0,230 W/mK ρ 1.100,0 kg/m²	PEIne GWP100 Summe AP	41,60 MJ/kg 0,819 kg CO2/kg 0,0056 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\frac{1}{2}\$ 2142684291
POROTHERM 25-38	d 0,2500 m λ 0,259 W/mK ρ 864,0 kg/m²	PEIne GWP100 Summe AP	2,30 MJ/kg 0,182 kg CO2/kg 0,0005 kg SO2/kg	baubook baubook_daten_20220328_V2_110.xml \$\rightarrow\$ 2142699708
Porotherm 50-20 H.i Plan	d 0,5000 m λ 0,090 W/mK ρ 615,0 kg/m²	PEIne GWP100 Summe AP	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	
Putzmörtel (Gips)	d 0,0100 m λ 0,700 W/mK ρ 1.400,0 kg/m²	PEIne GWP100 Summe AP	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	
Schüttung (Kies 16/32)	d 0,1000 m λ 0,700 W/mK ρ 1.800,0 kg/m²	PElne	0,00 MJ/kg 0,000 kg CO2/kg 0,0000 kg SO2/kg	WSK

Materialliste

d	0.4000			
1 1	0,1900 m	PElne	0,00 MJ/kg	
λ	0,050 W/mK	GWP100 Summe	0,000 kg CO2/kg	
ρ	15,0 kg/m²	AP	0,0000 kg SO2/kg	
d	0,0020 m	PElne	6,31 MJ/kg	öbox
λ	0,700 W/mK	GWP100 Summe	0,193 kg CO2/kg	oebox_daten_20080212_09.xml
ρ				S 2142684366
d	•			baubook
λ	•			baubook_daten_20210128_V2_110.xml
				S 2142684342
d	•			WSK
λ	•	1		ON V 31, Wien 2001
d	•			WSK
λ	•	1		ON V 31, Wien 2001
ρ		AP	0,0000 kg SO2/kg	
d	•	PElne	0,00 MJ/kg	WSK
λ	2,300 W/mK	GWP100 Summe		
ρ	2.400,0 kg/m ²	AP	0,0000 kg SO2/kg	
d	0,2000 m	PElne	102,00 MJ/kg	
λ	0,038 W/mK	GWP100 Summe	3,450 kg CO2/kg	
ρ		AP	0,0223 kg SO2/kg	
d	0,1200 m	PElne	102,00 MJ/kg	
λ	0,041 W/mK	GWP100 Summe		
ρ	112,8 kg/m²	AP	0,0000 kg SO2/kg	
d	0,0200 m	PElne	21,36 MJ/kg	baubook
λ	0,039 W/mK	GWP100 Summe	1,935 kg CO2/kg	baubook_daten_20220328_V2_110.xml
ρ	130,0 kg/m²	AP	0,0141 kg SO2/kg	3 2142714905
d	0,0250 m	PElne	4,45 MJ/kg	baubook
λ	1,000 W/mK	GWP100 Summe	0,258 kg CO2/kg	baubook_daten_20220328_V2_110.xml
ρ	2.000,0 kg/m ²	AP	0,0007 kg SO2/kg	3 2142715186
'				•
Baup	hysik	Ökodaten		Quelle
Ug	0,70 W/m²K	PElne	0,00 MJ/m²	
1 -	0,54 -	GWP100 Summe	0,000 kg CO2/m²	ÖNORM B 8110-6-1:2019-01, Tabelle 14
		AP	0,0000 kg SO2/m ²	
Ug	0,69 W/m²K	PElne	1.093,57 MJ/m²	
1 -	0,00 -	GWP100 Summe	-56,979 kg CO2/m²	
1	•	AP	0,2145 kg SO2/m²	
-		1		1
Baur	hysik	Ökodaten		Quelle
Uf	0.69 W/m²K	PElne	1.093,57 MJ/m²	
-	3,00 1111111	GWP100 Summe	•	
		AP	0,2145 kg SO2/m²	
Uf	1.05 W/m²K	PElne		
-	,, m	GWP100 Summe	-9,891 kg CO2/m²	 baubook_daten_20210128_V2_110.xml
		AP	0,5226 kg SO2/m²	S 2142706804
+		ı		l
Baur	hysik	Ökodaten		Quelle
Ψ	0,05 W/mK			
+ -	0,05 W/mK			
Ψ				
+ -	0,05 W/mK			
	P d λ ρ d δ d λ ρ d δ d λ ρ d δ d λ ρ d δ d λ ρ d δ d λ ρ d δ d λ ρ d δ d δ d λ ρ d δ d δ d δ d δ d δ d δ d δ d δ d δ d	ρ 1.700,0 kg/m² d 0,0050 m λ 0,800 W/mK ρ 1.300,0 kg/m² d 0,2000 m λ 2,300,0 kg/m² d 0,2500 m λ 2,300,0 kg/m² d 0,2000 m λ 2,300 W/mK ρ 2.400,0 kg/m² d 0,2000 m λ 0,038 W/mK ρ 20,0 kg/m² d 0,1200 m λ 0,041 W/mK ρ 112,8 kg/m² d 0,0200 m λ 0,039 W/mK ρ 130,0 kg/m² d 0,0250 m λ 1,000 W/mK ρ 2.000,0 kg/m² Bauphysik Ug 0,69 W/m²K g 0,00 - Bauphysik Uf 0,69 W/m²K	ρ 1.700,0 kg/m² AP d 0,0050 m PEIne λ 0,800 W/mK GWP100 summe ρ 1.300,0 kg/m² AP d 0,2000 m PEIne λ 2,300 W/mK GWP100 summe ρ 2.300,0 kg/m² AP d 0,2500 m PEIne λ 2,300 W/mK GWP100 summe ρ 2.300,0 kg/m² AP d 0,2000 m PEIne λ 2,300 W/mK GWP100 summe ρ 2.400,0 kg/m² AP d 0,038 W/mK GWP100 summe ρ 20,0 kg/m² AP d 0,0200 m PEIne λ 0,039 W/mK GWP100 summe ρ 130,0 kg/m² AP d 0,0250 m PEIne λ 1,000 W/mK GWP100 summe ρ 0,54 - GWP100 summe AP GWP100 summe D 0,69 W/m²K PE	ρ 1.700,0 kg/m² AP 0,0015 kg SO2/kg d 0,0050 m λ 0,800 W/mK ρ 1.300,0 kg/m² PEIne GWP100 Summe 3,07 MJ/kg 0,157 kg CO2/kg 0,0006 kg SO2/kg d 0,2000 m λ 2,300 W/mK ρ 2.300,0 kg/m² PEIne GWP100 Summe 0,000 MJ/kg 0,0000 kg CO2/kg d 0,2500 m λ 2,300 W/mK ρ 2.300,0 kg/m² PEIne GWP100 Summe 0,000 MJ/kg 0,0000 kg CO2/kg d 0,2000 m λ 2,300 W/mK ρ 2.400,0 kg/m² PEIne GWP100 Summe 0,000 MJ/kg 0,0000 kg CO2/kg d 0,2000 m λ 0,038 W/mK ρ 20,0 kg/m² PEIne GWP100 Summe 102,00 MJ/kg 0,0000 kg CO2/kg d 0,1200 m λ 0,041 W/mK ρ 112,8 kg/m² PEIne GWP100 Summe 102,00 MJ/kg 0,000 kg CO2/kg d 0,0200 m λ 0,041 W/mK ρ 130,0 kg/m² PEIne GWP100 Summe 1,935 kg CO2/kg 0,000 kg SO2/kg d 0,0250 m λ 1,000 W/mK ρ 2.000,0 kg/m² PEIne GWP100 Summe 4,45 MJ/kg 0,000 kg CO2/kg d 0,0250 m λ 1,000 W/mK ρ 2.000,0 kg/m² PEIne GWP100 Summe 1,093,57 MJ/m² 0,2145 kg SO2/m² Bauphysik Ökodaten Okodaten Ug 0,69 W/m²K g PEIne GWP100 Summe 1.093,57 MJ/m² -56,979 kg CO2/m² 0,2145 kg SO2/m² Bauphysik Ökodaten

Holzalufenster 107x133					Γ	Neubau
AF Fenster						
Wärmeschutz	Länge	Ψ	g	Fläche	%	ι
warnieschutz	m	W/mK	-	m²		W/m²k
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	0,98	69,10	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,44	30,90	1,05
Edelstahl	4,00	0,050				
			vorh.	1,42		0,95
Geometrie	1 - Flüg	elfenster				
	Breite			b		1,07 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		1,33 m
					Г	
Holzalufenster 183x133					L	Neubau
AF Fenster						
Wärmeschutz	Länge	Ψ	g	Fläche	%	L
06 1 147	m	W/mK	-	m²	70.00	W/m²k
3fach-Wärmeschutzverglasung 4/AR/4/AR/4 Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109			0,540	1,75	72,00	0,70
Edelstahl	7,62	0,050		0,68	28,00	1,05
Lucistani	7,02	0,030	vorh.	2,43		0,95
			voiii.	2,43		0,95
Geometrie	2 - Flüg	elfenster				
	Breite			b		1,83 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		1,33 m
	Sprossenbreite			s1		0,08 m
Holzalufenster 197x193						Neubau
AF						
Wärmeschutz	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	2,89	76,00	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109	40.00	0.050		0,91	24,00	1,05
Edelstahl	10,26	0,050	vorh.	3,80		0,92
Geometrie	2 - Flüg	elfenster				
	Breite	· ·		b		1,97 m
	Rahmer	ndicke		d1		0,10 m
	Höhe	. 3.0.0		h		1,93 m
	Sprosse	enbreite		 s1		0,10 m
						, , ,

Holzalufenster 247x193						Neubau
AF	Länge	Ψ	g	Fläche	%	ι
Wärmeschutz	m	Ψ W/mK	<u> </u>	m ²	70	W/m²k
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	3,75	78,80	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,01	21,20	1,05
Edelstahl	11,26	0,050				
			vorh.	4,77		0,89
Geometrie	2 - Flüg	elfenster				
	Breite			b		2,47 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		1,93 m
	Sprosse	enbreite		s1		0,10 m
Holzalufenster 297x193					L	Neubau
Wärmeschutz	Länge	Ψ	g	Fläche	%	ι
vui incociutz	m	W/mK	-	m²		W/m²k
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	4,62	80,60	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,11	19,40	1,05
Edelstahl	12,26	0,050				
			vorh.	5,73		0,87
Geometrie	2 - Flüge	elfenster				
	Breite			b		2,97 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		1,93 m
	Sprossenbreite			s1		0,10 m
Holzalufenster 300x195					Г	Neubau
AF					L	Neubau
Wärmeschutz	Länge	Ψ	g	Fläche	%	L
	m	W/mK	-	m²		W/m²k
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	4,73	80,80	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109 Edelstahl	12,40	0,050		1,13	19,20	1,05
			vorh.	5,85		0,87
Geometrie	2 - Flüge	elfenster				
	Breite			b		3,00 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		1,95 m
	Sprosse	nhreite		s1		0,10 m

Holzalufenstertüre 107x223						Neubau
AF Türe					L	
Wärmeschutz	Länge	Ψ	g	Fläche	%	L
TValline Schalz	m	W/mK	-	m²		W/m²k
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	1,77	74,00	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,62	26,00	1,05
Edelstahl	5,80	0,050				
			vorh.	2,39		0,91
Geometrie	1 - Flüge	elfenster				
	Breite			b		1,07 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		2,23 m
Holzalufenstertüre 197x223						Neubau
AF Türe						
Wärmeschutz	Länge	Ψ	g	Fläche	%	L
	m	W/mK	-	m²		W/m²k
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	3,39	77,20	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,00	22,80	1,05
Edelstahl	11,46	0,050				
			vorh.	4,39		0,91
Geometrie	2 - Flüge	elfenster				
	Breite			b		1,97 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		2,23 m
	Sprosse	enbreite		s1		0,10 m
Holzalufenstertüre 297x223						Neubau
AF Türe				= 1 1	0/	
Wärmeschutz	Länge	Ψ	g	Fläche	%	U
00 1 100	m	W/mK	-	m²	04.00	W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4 Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109			0,540	5,42	81,80	0,70
Edelstahl	13,46	0,050		1,20	18,20	1,05
Luciotarii	10,40	0,000	vorh.	6,62		0,87
Geometrie	2 - Flüge	elfenster				
<u></u>	Breite			b		2,97 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		2,23 m
	Sprosse	enbreite		s1		0,10 m

Türen unverglast, gegen Außenluft 107x223								
AT								
Wärmeschutz	Länge	Ψ	g	Fläche	%	U		
	m	W/mK	-	m²		W/m²K		
Alu gedämmt				2,38	100,00	0,69		
Glasrandverbund	5,46	0,050						
			vorh.	2,38		0,80		
Geometrie	Frei - Pr	ozent						
	Fenster		A_\	W	2,38 m2			
	Verbund	l		I_g	_01	5,46 m		
	Glasant	eil		рс	1	0,00 %		

Nachweis des Wärme- und Schallschutzes

wärmeabstrahlende

Umfassungsfläche

Objekt

Kindergarten Enzersdorf

Auftraggeber

VerfasserIn der Unterlagen

	Flächen der Bauteile	Fensterflächenanteil
Summe aller opaken Bauteilflächen	1.599,40 m²	
Summe aller transparenten Bauteilflächen	98,59 m²	
Summe aller opaken Bauteilflächen gegen Außenluft	765,40 m ²	
Summe aller transparenten Bauteilflächen gegen Außenluft	98,59 m²	11,41 %
Gesamtsumme aller Bauteilflächen	1.697,99 m²	<30 %

Baute	il Flächer	1		
Тур	Typ Nr.	Bezeichnung	transp.Bauteil?	Gesamte Fläche
AD	D1	Flachdach Neu		184,40
ADh	DAI 1	DAI 01 a Holzsparren-Flachgeneigtes Dach		47,60
AF		Holzalufenster 107x133	Т	2,84
AF		Holzalufenster 183x133	Т	2,43
AF		Holzalufenster 183x133	Т	2,43
AF		Holzalufenster 183x133	Т	2,43
AF		Holzalufenster 197x193	Т	7,60
AF		Holzalufenster 197x193	Т	3,80
AF		Holzalufenster 197x193	Т	3,80
AF		Holzalufenster 197x193	Т	3,80
AF		Holzalufenster 197x193	Т	15,20
AF		Holzalufenster 247x193	Т	4,77
AF		Holzalufenster 297x193	Т	5,73
AF		Holzalufenster 297x193	Т	5,73
AF		Holzalufenster 297x193	Т	5,73
AF		Holzalufenster 297x193	Т	5,73
AF		Holzalufenstertüre 107x223	Т	2,39
AF		Holzalufenstertüre 197x223	Т	13,17
AF		Holzalufenstertüre 197x223	Т	4,39
AF		Holzalufenstertüre 297x223	Т	6,62
AT		Türen unverglast, gegen Außenluft 107x223		2,38
AT		Türen unverglast, gegen Außenluft 107x223		2,38
AW	A2	Ziegelwand		42,95
AW	A2	Ziegelwand		18,80
AW	A2	Ziegelwand		154,32
AW	A2	Ziegelwand		30,20
AW	A3	Außenwand Ziegel/Polystyrol		39,82
AW	A3	Außenwand Ziegel/Polystyrol		33,77
Awh	A1	AW Holzfassade		79,98
Awh	A1	AW Holzfassade		42,71
Awh	A1	AW Holzfassade		15,95
Awh	A1	AW Holzfassade		70,10

Nachweis des Wärme- und Schallschutzes

wärmeabstrahlende

Umfassungsfläche

Objekt

Auftraggeber

VerfasserIn der Unterlagen

Kindergarten	Enzersdorf
--------------	------------

Summe aller opaken Bauteilflächen

Summe aller transparenten Bauteilflächen

Summe aller opaken Bauteilflächen

Summe aller opaken Bauteilflächen gegen Außenluft

Summe aller transparenten Bauteilflächen gegen Außenluft

Summe aller transparenten Bauteilflächen gegen Außenluft

Gesamtsumme aller Bauteilflächen

1.697,99 m²

<30 %

Bautei				
Тур	Typ Nr.	Bezeichnung	transp.Bauteil?	Gesamte Fläche
DGD	0025	Decke gg. Dachboden ungeh.		301,00
EBu	B1	Bodenplatte Neu		533,00
IW	I1	Ziegelwand gg. unbeheizt		30,50

Holzalufenster 107x133						Neubau
AF Fenster						
Wärmeschutz	Länge	Ψ	g	Fläche	%	U
Stock Wärmoockuttivereleeung 4/AD/4/AD/4	m	W/mK	0.540	m²	60.10	W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4 Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109			0,540	0,98 0,44	69,10 30,90	0,70 1,05
Edelstahl	4,00	0,050		0,44	00,00	1,00
	,	-,	vorh.	1,42		0,95
Geometrie	4 Flör	. 16				
Geometrie		elfenster				
	Breite Rahmer	diaka		b		1,07 m
	Höhe	laicke		d1 h		0,10 m 1,33 m
Schallschutz						,
Bauteileigenschaft	Anforde	erung				
	dB Rw			28 dB erfü	IIt	
	'			'		
Holzalufenster 183x133						Neubau
AF Fenster						
Wärmeschutz	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	1,75	72,00	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109 Edelstahl	7,62	0,050		0,68	28,00	1,05
	.,0=	0,000	vorh.	2,43		0,95
Geometrie	2 - Flüge	alfanstar				
	Breite	Silenster		b		1,83 m
	Rahmer	dicke		d1		0,10 m
	Höhe			h		1,33 m
	Sprosse	nbreite		s1		0,08 m
Schallschutz						
Bauteileigenschaft	Anforde	erung				
bewertetes Schalldämm-Maß R w 33	dB Rw		2	28 dB erfü	llt	
Holzalufenster 197x193						Neubau
AF						
Wärmeschutz	Länge	Ψ	g	Fläche	%	U
2foob Märmoochutziaralaauna 4/AD/4/AD/4	m	W/mK	0.540	2 90	76.00	W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4 Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109			0,540	2,89 0,91	76,00 24,00	0,70 1,05
Edelstahl	10,26	0,050		0,91	۷٦,00	1,00
	,					

Kindergarten Enzersdorf

Geometrie	2 - Flügelfenster						
			Breite		b	1,97 m	
			Rahmendicke		d1	0,10 m	
		Höhe		1,93 m			
			Sprossenbreite s1				
Schallschutz							
Bauteileigenschaft			Anforderung				
bewertetes Schalldämm-Maß	Rw	33 dB	Rw	28 dB	erfüllt		
			•				

Holzalufenster 247x193

Neubau

Länge	Ψ	g	Fläche	%	U
m	W/mK	-	m²		W/m²K
		0,540	3,75	78,80	0,70
			1,01	21,20	1,05
11,26	0,050				
		vorh.	4,77		0,89
2 - Flüg	elfenster				
Breite			b		2,47 m
Rahmer	ndicke		d1		0,10 m
Höhe	Höhe				1,93 m
Sprossenbreite					0,10 m
Anforde	erung				
IB Rw		2	28 dB erfü	illt	
	11,26 2 - Flüg Breite Rahmer Höhe Sprosse	m W/mK 11,26 0,050 2 - Flügelfenster Breite Rahmendicke Höhe Sprossenbreite Anforderung	m W/mK - 0,540 11,26 0,050 vorh. 2 - Flügelfenster Breite Rahmendicke Höhe Sprossenbreite Anforderung	m W/mK - m² 0,540 3,75 1,01 11,26 0,050 vorh. 4,77 2 - Flügelfenster Breite b Rahmendicke d1 h Höhe h Sprossenbreite s1 Anforderung Anforderung Anforderung	m W/mK - m² 0,540 3,75 78,80 1,01 21,20 11,26 0,050 vorh. 4,77 2 - Flügelfenster b Breite b Rahmendicke d1 Höhe h Sprossenbreite s1 Anforderung

Holzalufenster 297x193

Neubau

AF

Ar						
Wärmeschutz	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	4,62	80,60	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,11	19,40	1,05
Edelstahl	12,26	0,050				
			vorh.	5,73		0,87
Geometrie	2 - Flüg	elfenster				
	Breite			b		2,97 m
	Rahmendicke Höhe			d1		0,10 m
				h		1,93 m
	Sprosse	enbreite		s1		0,10 m
Schallschutz						
Bauteileigenschaft	Anford	erung				
bewertetes Schalldämm-Maß R w 33 dl	B Rw		-	28 dB erfü	illt	

Holzalufenster 300x195						Neubau
AF Wärmeschutz	Länge	Ψ	g	Fläche	%	L
wainieschutz	m	W/mK	-	m²		W/m²k
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	4,73	80,80	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,13	19,20	1,05
Edelstahl	12,40	0,050				
			vorh.	5,85		0,87
Geometrie	2 - Flüge	elfenster				
	Breite			b		3,00 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		1,95 m
	Sprosse	nbreite		s1		0,10 m
Schallschutz						
Bauteileigenschaft	Anforde	erung				
bewertetes Schalldämm-Maß R w 33 dB	Rw		2	28 dB erfü	illt	
Holzalufenstertüre 107x223					Γ	Neubau
AF Türe					L	Neubau
Wärmeschutz	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	1,77	74,00	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,62	26,00	1,05
Edelstahl	5,80	0,050	a ula	2.20		0.04
			vorh.	2,39		0,91
Geometrie	1 - Flüge	elfenster				
	Breite			b		1,07 m
	Rahmer	ndicke		d1		0,10 m
	Höhe			h		2,23 m
Schallschutz						
Bauteileigenschaft	Anforde	erung				
bewertetes Schalldämm-Maß R w 33 dB	Rw		2	28 dB erfü	illt	
Holzalufenstertüre 197x223					Γ	Neubau
AF Türe					L	Noubau
Wärmeschutz	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	3,39	77,20	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109	14 40	0.050		1,00	22,80	1,05
Edelstahl	11,46	0,050	vorh.	4,39		0,91
				/i 4U		41

Kindergarten Enzersdorf

Geometrie	2 - Flügelfenster						
	Breite		b	1,97 m			
			Rahmendicke		d1	0,10 m	
	H				h	2,23 m	
			Sprossenbreite	s1	0,10 m		
Schallschutz							
Bauteileigenschaft			Anforderung				
bewertetes Schalldämm-Maß	Rw	33 dB	Rw	28 dB	erfüllt	_	
			1				

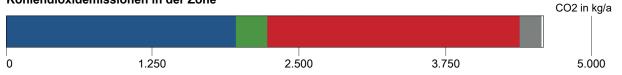
Holzalufenstertüre 297x223								Neubau
AF Türe								
Wärmeschutz		änge	Ψ	g	Fläch	ne	%	U
		m	W/mK	-	ı	n²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4				0,540	5,4	2 8	1,80	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109)				1,2	0 1	8,20	1,05
Edelstahl	1:	3,46	0,050					
				vorh.	6,6	2		0,87
Geometrie	2	- Flüge	elfenster					
	Bı	reite			ŀ)		2,97 m
	R	ahmen	dicke		(11		0,10 m
	H	öhe			ŀ	ı		2,23 m
	S	prosse	nbreite		5	s1		0,10 m
Schallschutz								
Bauteileigenschaft	A	nforde	erung					
bewertetes Schalldämm-Maß R w 33	3 dB R	w			28 dB	erfüllt		

Türen unverglast, gegen Außenluft 107x223

Neubau

ΑT

Wärmeschutz			Länge	Ψ	g	Fläc	he	%	U
			m	W/mK	-		m²		W/m²K
Alu gedämmt						2,	38	100,00	0,69
Glasrandverbund			5,46	0,050					
					vorh.	2,	38		0,80
Geometrie			Frei - Pr	ozent					
			Fenster				A_v	v	2,38 m2
			Verbund	k			l_g_	_01	5,46 m
			Glasanteil			p_g		0,00 %	
Schallschutz									
Bauteileigenschaft			Anforde	erung					
bewertetes Schalldämm-Maß	Rw	28 dB	Rw		2	28 dB	erfü	illt	


Anlagentechnik des Gesamtgebäudes

Kindergarten Enzersdorf

Kindergarten

Nutzprofil: Bildungseinrichtungen

Kohlendioxidemissionen in der Zone

Primärenergie	, C02 in der Zone	Anteil	PEB	CO2
			kWh/a	kg/a
RH	Raumheizung Anlage 1	10,0		
KII	Photovoltaik		0	0
RH	Raumheizung Anlage 1	90,0		
KII	Strom (Liefermix)		13.285	1.850
TW	Warmwasser Anlage 1	20,0		
1 V V	Photovoltaik		0	0
TW	Warmwasser Anlage 1	80,0		
1 00	Strom (Liefermix)		1.944	270
Bel.	Beleuchtung	10,0		
Dei.	Photovoltaik		0	0
Bel.	Beleuchtung	90,0		
Dei.	Strom (Liefermix)		15.513	2.160
SB	Betriebsstrombedarf	30,0		
35	Photovoltaik		0	0
SB	Betriebsstrombedarf	70,0		
35	Strom (Liefermix)		1.278	178

Hilfsenergi	e in der Zone	Anteil	PEB	CO2
			kWh/a	kg/a
RH	Raumheizung Anlage 1	30,0		
КП	Photovoltaik		0	0
RH	Raumheizung Anlage 1	70,0		
INI I	Strom (Liefermix)		850	118
TW	Warmwasser Anlage 1	30,0		
IVV	Photovoltaik		0	0
TW	Warmwasser Anlage 1	70,0		
I VV	Strom (Liefermix)		0	0

Energiebedarf in der Zone		versorgt BGF	Lstg.	EB
		m²	kW	kWh/a
RH	Raumheizung Anlage 1	533,00	26	9.056
TW	Warmwasser Anlage 1	533,00		1.491
Bel.	Beleuchtung	533,00		10.574
SB	Betriebsstrombedarf	533,00		1.120

Konversionsfaktoren

Konversionsfaktoren zur Ermittlung des PEB (f PE), des nichterneuerbaren Anteils des PEB (f PE,n.em.), des erneuerbaren Anteils des PEB (f PE,em.) sowie des CO2 (f co2).

des efficientaten Afficia des 1 Eb (172,em.) sowie des 002 (1002).	f₽E	${f f}$ PE,n.ern.	f PE,ern.	f co2
	-	-	-	g/kWh
Photovoltaik	0,00	0,00	0,00	0
Strom (Liefermix)	1,63	1,02	0,61	227

Raumheizung Anlage 1

Bereitstellung: RH-Wärmebereitstellung zentral, Defaultwert für Leistung (25,58 kW), Wärmepumpe, monovalenter Betrieb, Luft/Wasser-Wärmepumpe, ab 2017 (COP N = 3,96),

modulierend, Baujahr 2022

Jahresarbeitszahl

3,86 -

3,86 -

Jahresarbeitszahl gesamt (inkl. Hilfsenergie)

Speicherung: Heizungsspeicher (Wärmepumpe) (1994 -), Anschlussteile gedämmt, mit E-Patrone, Aufstellungsort konditionierte Lage in Zone Kindergarten, Nenninhalt, Defaultwert (Nenninhalt: 639 I)

Verteilleitungen: Längen pauschal proportional, Lage konditioniert, 3/3 gedämmt, Armaturen ungedämmt

Steigleitungen: Längen pauschal proportional, Lage konditioniert, 3/3 gedämmt, Armaturen gedämmt

Anbindeleitungen: Längen pauschal, 2/3 gedämmt, Armaturen gedämmt

Abgabe: Raumthermostat-Zonenregelung mit Zeitsteuerung, Flächenheizung, individuelle Wärmeverbrauchsermittlung, Flächenheizung ($35~^{\circ}\text{C}$ / $28~^{\circ}\text{C}$), gleitende Betriebsweise

	Verteilleitungen	Steigleitungen	Anbindeleitungen
Kindergarten	27,97 m	42,64 m	149,24 m
unkonditioniert	0,00 m	0,00 m	

Warmwasser Anlage 1

Bereitstellung: WW- und RH-Wärmebereitstellung kombiniert, Raumheizung Anlage 1

Speicherung: Kein Warmwasserspeicher

Verteilleitungen: Längen pauschal, nicht konditioniert, 3/3 gedämmt, Armaturen ungedämmt Steigleitungen: Längen pauschal, nicht konditioniert, 3/3 gedämmt, Armaturen ungedämmt

Zirkulationsleitung: Ohne Zirkulation

Stichleitung: Längen pauschal, Kunststoff (Stichl.)

Abgabe: Zweigriffarmaturen, individuelle Wärmeverbrauchsermittlung

	Verteilleitungen	Steigleitungen	Stichleitungen
Kindergarten	0,00 m	0,00 m	25,58 m
unkonditioniert	12,54 m	21,32 m	

Beleuchtung

Berechnung mit Benchmark-Werten

	Fläche	Benchmark
Kindergarten	533,00 m ²	19,84 kWh/m²a

Anlagentechnik des Gesamtgebäudes

Kindergarten Enzersdorf

Photovoltaik

Kollektor: Erträge werden beim EAW berücksichtigt: Energieausweis (Bildungseinrichtungen),

Aperturfläche: 66,67 m², Spitzenleistung: 10,00 kW,

mittlerer Wirkungsgrad: η PVM = 0,15 - monokristallines Silicium, mittlerer Systemleistungsfaktor: f PVA = 0,76 - unbelüftete PV-Module,

Geländewinkel 10°, Orientierung des Kollektors Süd, Neigungswinkel 45°, kein Stromspeicher

	Holzalufenster 107x133						Neubau
AF	Fenster						
		Länge	Ψ	g	Fläche	%	U
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	0,98	69,10	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,44	30,90	1,05
	Edelstahl	4,00	0,050				
			•	vorh.	1,42		0,95

	Holzalufenster 183x133					L	Neubau
AF	Fenster						
		Länge	Ψ	g	Fläche	%	U
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	1,75	72,00	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,68	28,00	1,05
	Edelstahl	7,62	0,050				
		-	-	vorh.	2,43		0,95

	Holzalufenster 197x193						Neubau
AF		Länge	Ψ	g	Fläche	%	U
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	2,89	76,00	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,91	24,00	1,05
	Edelstahl	10,26	0,050				
				vorh.	3,80		0,92

	Holzalufenster 247x193						Neubau
AF					F	0/	
		Länge	Ψ	g	Fläche	%	
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	3,75	78,80	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,01	21,20	1,05
	Edelstahl	11,26	0,050				
			-	vorh.	4,77		0,89

Holzalufenster 297x193

Neubau

	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	4,62	80,60	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,11	19,40	1,05
Edelstahl	12,26	0,050				
			vorh.	5,73		0.87

Holzalufenster 300x195

Neubau

 AF

	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	4,73	80,80	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,13	19,20	1,05
Edelstahl	12,40	0,050				
			vorh.	5,85		0,87

Holzalufenstertüre 107x223

Neubau

AF	Türe						
		Länge	Ψ	g	Fläche	%	U
		m	W/mK	-	m²		W/m²K
	3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	1,77	74,00	0,70
	Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				0,62	26,00	1,05
	Edelstahl	5,80	0,050				
				vorh.	2,39		0.91

Holzalufenstertüre 197x223

Neubau

Türe

	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	3,39	77,20	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,00	22,80	1,05
Edelstahl	11,46	0,050				
			vorh.	4,39		0,91

Holzalufenstertüre 297x223

Neubau

AF	Türe
----	------

 * =: =						
	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
 3fach-Wärmeschutzverglasung 4/AR/4/AR/4			0,540	5,42	81,80	0,70
Holz-Alu-Rahmen Fichte <= 91 Stockrahmentiefe < 109				1,20	18,20	1,05
Edelstahl	13,46	0,050				
			vorh.	6,62		0,87

Türen unverglast, gegen Außenluft 107x223

Neubau

 AT

	Länge	Ψ	g	Fläche	%	U
	m	W/mK	-	m²		W/m²K
Alu gedämmt				2,38	100,00	0,69
Glasrandverbund	5,46	0,050				
			vorh.	2.38		0.80

0025	Decke gg. Dachboden ungeh.			Neubau
DGD	O-U, Betondecke mit Dachdämmelement			
		d [m]	λ [W/mK]	R [m2K/W]
1	steinopor 750 (110+10mm)	0,1200	0,040	2,950
2	steinopor 700 EPS-W20 (200mm)	0,2000	0,038	5,263
3	PAE-Folie	0,0002	0,230	0,001
4	Stahlbeton-Decke (20cm)	0,2000	2,300	0,087
5	Innenputz (Gips)	0,0200	0,700	0,029
	Wärmeübergangswiderstände			0,200
		0,5400	RT =	8,530
			U =	0 117

A1		AW Holzfassade			Neubau
Awh		A-I			
	Lage		d [m]	λ [W/mK]	R [m2K/W]
1		Nutzholz (525 kg/m³ - zB Lärche) - gehobelt, techn. get	0,0250	0,130	0,192
2		Luftschicht stehend, Wärmefluss horizontal 20 < d <=	0,0250	0,147	0,170
3.0	_	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, luftgetro	0,1600	0,120	1,333
		Breite: 0,05 m Achsenabstand: 0,80 m			
3.1		Glaswolle MW(GW)-W (24 kg/m³)	0,1600	0,036	4,444
5		POROTHERM 25-38	0,2500	0,259	0,965
6		Gipsputze (1000 kg/m³)	0,0100	0,400	0,025
		Wärmeübergangswiderstände			0,260
		RTo=4,608 m2K/W; RTu=4,501 m2K/W;	0,2100	RT = U =	4,554 0,220

A2	Ziegelwand			Neubau
AW	A-I, monolithische Ziegelwand			
		d [m]	λ [W/mK]	R [m2K/W]
1	Leichtputz	0,0200	0,600	0,033
2	Porotherm 50-20 H.i Plan	0,5000	0,090	5,556
3	Putzmörtel (Gips)	0,0100	0,700	0,014
	Wärmeübergangswiderstände			0,170
		0,5300	RT =	5,773
			U =	0.173

A3	Außenwand Ziegel/Polystyrol			Neubau
AW	A-I			
		d [m]	λ [W/mK]	R [m2K/W]
1	Silikonharzputz	0,0020	0,700	0,003
2	EPS-F grau/schwarz (15.8 kg/m³)	0,1600	0,032	5,000
3	Kleber mineralisch	0,0050	0,800	0,006
4	POROTHERM 25-38	0,2500	0,259	0,965
5	Gipsputze (1000 kg/m³)	0,0100	0,400	0,025
	Wärmeübergangswiderstände			0,170
		0,4270	RT =	6,169
			U =	0,162

B1	Bodenplatte Neu				Neubau
EBu	U-O, gegen Erdreich				
			d [m]	λ [W/mK]	R [m2K/W]
1	Stahlbeton (R = 2300)		0,2000	2,300	0,087
2	Abdichtung		0,0010	0,230	0,004
3	Schüttung (Polystyrolschaumstoff-Partikel)		0,1900	0,050	3,800
4	EPS-T 1000 (17 kg/m³)		0,0300	0,038	0,789
5	PAE-Folie		0,0010	0,230	0,004
6	Estrich (Zement-)	F	0,0650	1,400	0,046
7	Parkettboden		0,0150	0,170	0,088
	Wärmeübergangswiderstände				0,170
			0,5020	RT =	4,988
	F = Schicht mit Flächenheizung			11 =	0.200

D1		Flachdach Neu			Neubau
AD		O-U, Warmdach			
			d [m]	λ [W/mK]	R [m2K/W]
	1	Schüttung (Kies 16/32)	0,1000	0,700	0,143
	2	EPDM Baufolie, Gummi	0,0040	0,170	0,024
	3	EPS-W 25 (23 kg/m³)	0,2000	0,036	5,556
	4	Polymerbitumen-Dichtungsbahn	0,0040	0,230	0,017
	5	Stahlbeton (R = 2300)	0,2500	2,300	0,109
	6	Spachtel - Gipsspachtel	0,0050	0,800	0,006
		Wärmeübergangswiderstände			0,140
			0,5630	RT =	5,995
				U =	0,167

DAI 0		DAI 01 a Holzsparren-Steildach			Neubau
ADh		O-U			
	Lage		d [m]	λ [W/mK]	R [m2K/W]
1		Tondachziegel (2000 kg/m³)	0,0250		
2.0	_	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,09 m Achsenabstand: 0,62 m	0,0300		
2.1		Luftschicht stehend, Wärmefluss nach oben 26 < d	0,0300		
3.0	I	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,0500		
3.1		Luftschicht stehend, Wärmefluss nach oben 46 < d	0,0500		
4		Holzfaserplatte porös bituminiert (250 kg/m³)	0,0200	0,057	0,351
5.0	_	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,1000	0,120	0,833
5.1		Glaswolle MW(GW)-W (18 kg/m³)	0,1000	0,038	2,632
6.0	I	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,2400	0,120	2,000
6.1		Glaswolle MW(GW)-W (18 kg/m³)	0,2400	0,038	6,316
7		Holzspanplatten innen (650 kg/m³)	0,0220	0,130	0,169
8		Dampfbremse PE	0,0002	0,500	0,000
9.0	_	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,0600	0,120	0,500
9.1		Glaswolle MW(GW)-W (18 kg/m³)	0,0600	0,038	1,579
10		Gipskartonplatte (900 kg/m³)	0,0150	0,250	0,060
11		Gipskartonplatte (900 kg/m³)	0,0150	0,250	0,060
		Wärmeübergangswiderstände			0,200
		RTo=10,695 m2K/W; RTu=10,244 m2K/W;	0,5770	RT = U =	10,469 0,096

DAI 1		DAI 01 a Holzsparren-Flachgeneigtes Dach			Neubau
ADh		O-U			
	Lage		d [m]	λ [W/mK]	R [m2K/W]
1		Blecheindeckung	0,0020		
2		Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc	0,0250		
3.0	1	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc Breite: 0,06 m Achsenabstand: 0,62 m	0,0500		
3.1		Luftschicht stehend, Wärmefluss nach oben 46 < d	0,0500		
4		Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc	0,0250		

5.0	Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc	0,2400	0,120	2,000
	Breite: 0,06 m Achsenabstand: 0,62 m			
5.1	Glaswolle MW(GW)-W (18 kg/m³)	0,2400	0,038	6,316
6	Dampfbremse PE	0,0002	0,500	0,000
7.0	 Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, technisc	0,0600	0,120	0,500
	Breite: 0,06 m Achsenabstand: 0,62 m			
7.1	Luftschicht stehend, Wärmefluss nach oben 56 < d	0,0600	0,375	0,160
8	Gipskartonplatte (900 kg/m³)	0,0150	0,250	0,060
9	Gipskartonplatte (900 kg/m³)	0,0150	0,250	0,060
	Wärmeübergangswiderstände			0,200
	RTo=5,833 m2K/W; RTu=5,694 m2K/W;	0,4320	RT =	5,763
			U =	0,174

I1	Ziegelwand gg. unbeheizt			Neubau
IW	A-I, monolithische Ziegelwand			
		d [m]	λ [W/mK]	R [m2K/W]
1	Putzmörtel (Gips)	0,0100	0,700	0,014
2	POROTHERM 25-38	0,2500	0,259	0,965
3	Putzmörtel (Gips)	0,0100	0,700	0,014
	Wärmeübergangswiderstände			0,260
		0,2700	RT =	1,253
			U =	0.798

I1	Ziegelwand gg. unbeheizt			Neubau
WGU	A-I, monolithische Ziegelwand			
		d [m]	λ [W/mK]	R [m2K/W]
1	Steinwolle MW(SW)-T (130 kg/m³)	0,0200	0,039	0,513
2	Porotherm 50-20 H.i Plan	0,5000	0,090	5,556
3	Putzmörtel (Gips)	0,0100	0,700	0,014
	Wärmeübergangswiderstände			0,260
		0,5300	RT =	6,343
			U =	0,158

Ergebnisdarstellung

Kindergarten Enzersdorf

Berechnungsgrundlagen

Sachbearbeiter: Bauamt

Wärmeschutz U-Wert ON B 8110-6-1:2019-01-15, EN ISO 10077-1:2018-02-01

 Dampfdiffusion
 Bewertung
 ON B 8110-2: 2003

 Schallschutz
 R w
 ON B 8115-4: 2003

 R res,w
 ON B 8115-4: 2003

 L' nT,w
 ON B 8115-4: 2003

 D nT,w
 ON B 8115-4: 2003

Opake Bauteile

Erforderliche Werte werden in Klammer angeführt

Nummer	Bezeichnung	U-Wert W/m²K	Dampf- diffusion	•	
0025	Decke gg. Dachboden ungeh.	0,117 (0,20)		(42)	(53)
A1	AW Holzfassade	0,220 (0,35)		(43)	
A2	Ziegelwand	0,173 (0,35)		55 (43)	
A3	Außenwand Ziegel/Polystyrol	0,162 (0,35)	ок	(43)	
B1	Bodenplatte Neu	0,200 (0,40)		65	
D1	Flachdach Neu	0,167 (0,20)		66 (43)	(53)
DAI 0	DAI 01 a Holzsparren-Steildach	0,096 (0,20)		(47)	(53)
DAI 1	DAI 01 a Holzsparren-Flachgeneigtes Dach	0,174 (0,20)		(47)	(53)
l1	Ziegelwand gg. unbeheizt	0,798		51	
l1	Ziegelwand gg. unbeheizt	0,158 (0,60)		(58)	

Transparente Bauteile

Erforderliche Werte werden in Klammer angeführt

Nummer	Bezeichnung	U-Wert W/m²K	U-Wert PNM W/m²K	R w (C; C tr)
	Holzalufenster 107x133	0,950 (1,40)		33 (-; -) (28 (-; -))
	Holzalufenster 183x133	0,950 (1,40)		33 (-; -) (28 (-; -))
	Holzalufenster 197x193	0,920 (1,40)		33 (-; -) (28 (-; -))
	Holzalufenster 247x193	0,890 (1,40)		33 (-; -) (28 (-; -))
	Holzalufenster 297x193	0,870 (1,40)		33 (-; -) (28 (-; -))
	Holzalufenster 300x195	0,870 (1,40)		33 (-; -) (28 (-; -))
	Holzalufenstertüre 107x223	0,910 (1,40)		33 (-; -) (28 (-; -))
	Holzalufenstertüre 197x223	0,910 (1,40)		33 (-; -) (28 (-; -))
	Holzalufenstertüre 297x223	0,870 (1,40)		33 (-; -) (28 (-; -))
	Türen unverglast, gegen Außenluft 107x223	0,800 (1,40)		28 (-; -) (28 (-; -))

Flächen der thermischen Gebäudehülle		m² 1.697,99
		1.097,39
Opake Flächen	94,19 %	1.599,40
Fensterflächen	5,81 %	98,59
Wärmefluss nach oben		533,00
Wärmefluss nach unten		533,00
Andere Flächen		30,50
Opake Flächen	100 %	30,50
Fensterflächen	0 %	0,00

Flächen der thermischen Gebäudehülle

ten			Bildungseinrichtung
Holzalufenster 107x133	SSW	2 x 1,42	2,
Holzalufenster 183x133	SSW	1 x 2,43	2
Holzalufenster 183x133	SSW	1 x 2,43	2
Holzalufenster 183x133	WNW	1 x 2,43	2
Holzalufenster 197x193	NNO	2 x 3,80	7
Holzalufenster 197x193	NNO	1 x 3,80	3,
Holzalufenster 197x193	OSO	1 x 3,80	3,
Holzalufenster 197x193	OSO	4 x 3,80	15
			_
Holzalufenster 197x193	WNW	1 x 3,80	3,
Holzalufenster 247x193	NNO	1 x 4,77	4,
Holzalufenster 297x193	NNO	1 x 5,73	5

			m²
Holzalufenster 297x193	oso	1 x 5,73	5,73
			m²
Holzalufenster 297x193	OSO	1 x 5,73	5,73
Holzalufenster 297x193	SSW	1 x 5,73	m² 5,73
			m²
Holzalufenstertüre 107x223	OSO	1 x 2,39	2,39
Holzalufenstertüre 197x223	NNO	3 x 4,39	m² 13,17
Holzalufenstertüre 197x223	SSW	1 x 4,39	m² 4,39
			m²
Holzalufenstertüre 297x223	oso	1 x 6,62	6,62
Türen unverglast, gegen Außenluft 107	7x2 OSO	1 x 2,38	m² 2,38
Türen unverglast, gegen Außenluft 107 Türen unverglast, gegen Außenluft 107		1 x 2,38	
Türen unverglast, gegen Außenluft 107			2,38 m² 2,38 m²
			2,38 m² 2,38
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh.	v2 ssw	1 x 2,38	2,38 m² 2,38 m² 301,00
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche	v2 ssw	1 x 2,38	2,38 m² 2,38 m² 301,00 301,00
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade	Y x2 SSW	1 x 2,38 x+y 1 x 301	2,38 m² 2,38 m² 301,00 301,00 m² 208,76
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7	Yx2 ssw	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48	2,38 m² 2,38 m² 301,00 301,00 m² 208,76 44,97
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A	Yx2 ssw	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48	2,38 m² 2,38 m² 301,00 301,00 m² 208,76 44,97 11,06
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193	Yx2 ssw	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 -2 x 3,80	2,38 m² 2,38 m² 301,00 301,00 301,00 44,97 11,06 -7,60 -5,73 48,83
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12	H NNO NNO	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48	2,38 m² 2,38 m² 301,00 301,00 301,00 44,97 11,06 -7,60 -5,73 48,83 42,20
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193	H NNO NNO OSO	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80	2,38 m² 2,38 m² 301,00 301,00 301,00 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193 Holzalufenster 197x193 Holzalufenster 297x193	H NNO NNO OSO OSO	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 -2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80 -1 x 5,73	2,38 m² 2,38 m² 301,00 301,00 301,00 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20 -5,73
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193 Holzalufenster 297x193 Wand B5	H NNO NNO OSO	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80 -1 x 5,73 1 x 20,84 * 4,48	2,38 m² 2,38 m² 301,00 301,00 301,00 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20 -5,73 93,36
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193 Holzalufenster 297x193 Wand B5 Holzalufenster 297x193	H NNO NNO OSO OSO	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80 -1 x 5,73 1 x 20,84 * 4,48 -1 x 5,73	2,38 m² 2,38 m² 301,00 301,00 301,00 m² 208,76 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20 -5,73 93,36 -5,73
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193 Holzalufenster 297x193 Wand B5 Holzalufenster 297x193 Holzalufenster 297x193 Holzalufenster 107x133	H NNO NNO OSO OSO	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80 -1 x 5,73 1 x 20,84 * 4,48 -1 x 5,73 -2 x 1,42	2,38 m² 2,38 m² 301,00 301,00 301,00 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20 -5,73 93,36 -5,73 -2,84
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193 Holzalufenster 297x193 Wand B5 Holzalufenster 297x193 Holzalufenster 107x133 Holzalufenster 107x133 Holzalufenster 183x133	H NNO NNO OSO OSO SSW	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80 -1 x 5,73 1 x 20,84 * 4,48 -1 x 5,73 -2 x 1,42 -1 x 2,43	2,38 m² 2,38 m² 301,00 301,00 301,00 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20 -5,73 93,36 -5,73 -2,84 -2,43
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193 Holzalufenster 297x193 Wand B5 Holzalufenster 297x193 Holzalufenster 107x133 Holzalufenster 107x133 Holzalufenster 183x133 Türen unverglast, gegen Außenluft 1	H NNO NNO OSO OSO SSW	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80 -1 x 5,73 1 x 20,84 * 4,48 -1 x 5,73 -2 x 1,42 -1 x 2,43 -1 x 2,38	2,38 m² 2,38 m² 301,00 301,00 301,00 m² 208,76 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20 -5,73 93,36 -5,73 -2,84 -2,43 -2,38
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193 Holzalufenster 297x193 Wand B5 Holzalufenster 297x193 Holzalufenster 297x193 Holzalufenster 107x133 Holzalufenster 107x133 Holzalufenster 183x133 Türen unverglast, gegen Außenluft 1 Wand B4	H NNO NNO OSO OSO SSW	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80 -1 x 5,73 1 x 20,84 * 4,48 -1 x 5,73 -2 x 1,42 -1 x 2,43 -1 x 2,38 1 x 1,94 * 4,48	2,38 m² 2,38 m² 301,00 301,00 301,00 m² 208,76 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20 -5,73 93,36 -5,73 -2,84 -2,43 -2,38 8,69
Türen unverglast, gegen Außenluft 107 Decke gg. Dachboden ungeh. Fläche AW Holzfassade Wand B7 Wand B13-A Holzalufenster 197x193 Holzalufenster 297x193 Wand B6 Wand B12 Holzalufenster 197x193 Holzalufenster 297x193 Wand B5 Holzalufenster 297x193 Holzalufenster 107x133 Holzalufenster 107x133 Holzalufenster 183x133 Türen unverglast, gegen Außenluft 1	H NNO NNO OSO OSO SSW	1 x 2,38 x+y 1 x 301 1 x 10,04 * 4,48 1 x 2,47 * 4,48 2 x 3,80 -1 x 5,73 1 x 10,90 * 4,48 1 x 9,42 * 4,48 -4 x 3,80 -1 x 5,73 1 x 20,84 * 4,48 -1 x 5,73 -2 x 1,42 -1 x 2,43 -1 x 2,38	2,38 m² 2,38 m² 301,00 301,00 301,00 m² 208,76 44,97 11,06 -7,60 -5,73 48,83 42,20 -15,20 -5,73 93,36 -5,73 -2,84 -2,43 -2,38

Wand B13	NNO		1 x 8,50 * 4,48	38,0
B15	NNO		1 x 3,00 * 4,48	13,4
Holzalufenster 197x193			-1 x 3,80	-3,8
Holzalufenster 247x193			-1 x 4,77	-4,7
Wand B2	oso		1 x 9,40 * 4,48	42,1
Holzalufenster 197x193			-1 x 3,80	-3,8
Holzalufenster 297x193			-1 x 5,73	-5,7
Türen unverglast, gegen Auße	enluft 107x223		-1 x 2,38	-2,3
Wand B3	SSW		1 x 5,72 * 4,48	25,6
Holzalufenstertüre 197x223			-1 x 4,39	-4,3
Holzalufenster 183x133			-1 x 2,43	-2,4
Wand B14	WNW		1 x 18,99 * 4,48	85,0
Wand B16	WNW		1 x 16,00 * 4,48	71,6
Holzalufenster 183x133			-1 x 2,43	-2,4
				n
Außenwand Ziegel/Polystyrol				73,6
Laube B9	NNO		1 x 11,83 * 4,48	52,9
Holzalufenstertüre 197x223			-3 x 4,39	-13,1
Laube B10	oso		1 x 9,55 * 4,48	42,7
Holzalufenstertüre 297x223			-1 x 6,62	-6,6
Holzalufenstertüre 107x223			-1 x 2,39	-2,3
				n
Bodenplatte Neu				533,0
Fläche	Н	x+y	1 x 533	533,0
				n
Flachdach Neu				184,4
Fläche	Н	x+y	1 x 184,40	184,4
				n
DAI 01 a Holzsparren-Flachgene	igtes Dac			47,6
Fläche	Н	x+y	1 x 23,10	23,1
Fläche	Н	х+у	1 x 24,50	24,5

Kinderg	arten				Bildungseinrichtungen
					m²
I1	Ziegelwand gg. unbeheizt				30,51
	Fläche	SSW	x+v	1 x 6.81*4.48	30.50

gegen Außen	Le	232,52	
über Unbeheizt	Lu	31,69	
über das Erdreich	Lg	74,62	
Leitwertzuschlag für linienförmige und punktförmige Wärmebrücken		37,30	
Transmissionsleitwert der Gebäudehülle	LT	376,14	W/K
Lüftungsleitwert	LV	160,80	W/K
Mittlerer Wärmedurchgangskoeffizient	Um	0,220	W/m²

... gegen Außen, über Unbeheizt und das Erdreich

Bauteile gegen Außenluft

		m²	W/m²K	f	f FH	W/K
Nord-	Nord-Ost					
	Holzalufenster 197x193	3,80	0,920	1,0		3,50
	Holzalufenster 197x193	7,60	0,920	1,0		6,99
	Holzalufenster 247x193	4,77	0,890	1,0		4,25
	Holzalufenster 297x193	5,73	0,870	1,0		4,99
	Holzalufenstertüre 197x223	13,17	0,910	1,0		11,98
A2	Ziegelwand	42,95	0,173	1,0		7,43
A3	Außenwand Ziegel/Polystyrol	39,82	0,162	1,0		6,45
A1	AW Holzfassade	42,71	0,220	1,0		9,40
		160,56				54,99
Ost-S	üd-Ost					
	Holzalufenster 197x193	15,20	0,920	1,0		13,98
	Holzalufenster 197x193	3,80	0,920	1,0		3,50
	Holzalufenster 297x193	5,73	0,870	1,0		4,99
	Holzalufenster 297x193	5,73	0,870	1,0		4,99
	Holzalufenstertüre 107x223	2,39	0,910	1,0		2,17
	Holzalufenstertüre 297x223	6,62	0,870	1,0		5,76
	Türen unverglast, gegen Außenluft 107x223	2,38	0,800	1,0		1,90
A2	Ziegelwand	30,20	0,173	1,0		5,22
А3	Außenwand Ziegel/Polystyrol	33,77	0,162	1,0		5,47
A1	AW Holzfassade	70,10	0,220	1,0		15,42
		175,92				63,40
Süd-S	äüd-West					
	Holzalufenster 107x133	2,84	0,950	1,0		2,70
	Holzalufenster 183x133	2,43	0,950	1,0		2,31
	Holzalufenster 183x133	2,43	0,950	1,0		2,31
	Holzalufenster 297x193	5,73	0,870	1,0		4,99
	Holzalufenstertüre 197x223	4,39	0,910	1,0		3,99
	Türen unverglast, gegen Außenluft 107x223	2,38	0,800	1,0		1,90
A2	Ziegelwand	18,80	0,173	1,0		3,25
A1	AW Holzfassade	79,98	0,220	1,0		17,60
		118,98				39,05
West-	Nord-West					
	Holzalufenster 183x133	2,43	0,950	1,0		2,31
	Holzalufenster 197x193	3,80	0,920	1,0		3,50
A2	Ziegelwand	154,32	0,173	1,0		26,70

Leitwerte

West-N	ord-West					
A1	AW Holzfassade	15,95	0,220	1,0		3,51
		176,51				36,02
Horizo	ntal					
D1	Flachdach Neu	184,40	0,167	1,0		30,79
DAI 1	DAI 01 a Holzsparren-Flachgeneigtes Dach	47,60	0,174	1,0		8,28
0025	Decke gg. Dachboden ungeh.	301,00	0,117	0,9		31,70
B1	Bodenplatte Neu	533,00	0,200	0,7	1,25	74,62
		1.066,00				145,39

Summe 1.697,99

... Leitwertzuschlag für linienförmige und punktförmige Wärmebrücken

Leitwerte über Wärmebrücken

Wärmebrücken pauschal 37,30 W/K

... über Lüftung

Lüftungsleitwert

Fensterlüftung 160,80 W/K

keine Nachtlüftung

Lüftungsvolumen VL = 1.108,64 m³

Hygienisch erforderliche Luftwechselrate nL = 1,15 1/h
Luftwechselrate Nachtlüftung nL,NL = 1,50 1/h

Monate	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
n L,m,h	0,426	0,410	0,426	0,421	0,426	0,421	0,426	0,426	0,421	0,426	0,421	0,426
n L,m,c	0,426	0,410	0,426	0,421	0,426	0,421	0,426	0,426	0,421	0,426	0,421	0,426

Kindergarten

Wirksame Wärmespeicherfähigkeit der Zone

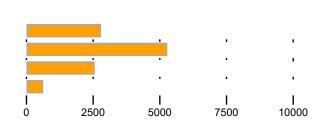
schwere Bauweise

Interne Wärmegewinne

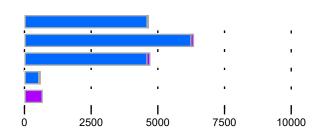
Bildungseinrichtungen

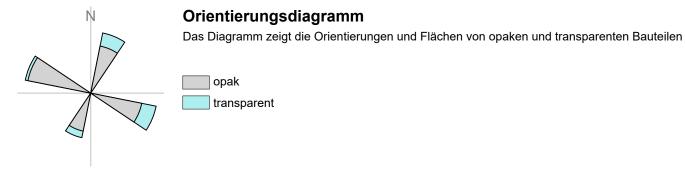
Wärmegewinne Kühlfall	qi,c,n =	3,75 W/m2	
Wärmegewinne Heizfall	qi,h,n =	2,25 W/m2	

Solare Wärmegewinne


Transparente Bauteile	Anzahl	Fs -	Summe Ag m2	g -	A trans,c m2	A trans,h m2
Nord-Nord-Ost						
Holzalufenster 197x193	1	0,50	2,88	0,540	1,07	0,68
Manuelle Bedienung (a $m,s,c = 0,2$	25), Sonnenschutz aussen, seh	r dunkel, L	amellenbehänge	e, Lamellenwi	nkel halboffen	(45°), g
tot: 0,07						
Holzalufenster 197x193	2	0,50	5,77	0,540	2,15	1,37
Manuelle Bedienung (a m , s , c = 0,2 tot: 0,07	25), Sonnenschutz aussen, seh	r dunkel, L	.amellenbehänge	e, Lamellenwi	nkel halboffen	(45°), g
Holzalufenster 247x193	1	0,50	3,75	0,540	0,54	0,89
automatische Steuerung (a m,s,c : tot: 0,07	= 0,8), Sonnenschutz aussen, s	ehr dunke	l, Lamellenbehäi	nge, Lameller	nwinkel halbofl	^r en (45°), g
Holzalufenster 297x193	1	0,50	4,61	0,540	2,19	1,09
keine Sonnenschutzeinrichtung (a	m,s,c=0)					
Holzalufenstertüre 197x223	3	0,50	10,16	0,540	4,84	2,42
keine Sonnenschutzeinrichtung (a	m,s,c=0)					
	8		27,19		10,81	6,47
Ost-Süd-Ost						
Holzalufenster 197x193	1	0,50	11,55	0.540	2,07	2,75
automatische Steuerung (a m,s,c : tot: 0,12	= 0,8), Sonnenschutz aussen, s		,	- ,	•	
Holzalufenster 197x193	1	0,50	2,88	0.540	0,41	0.68
automatische Steuerung (a m,s,c : tot: 0,07	= 0,8), Sonnenschutz aussen, s	•	•	- ,	,	,
Holzalufenster 297x193	1	0,50	4,61	0,540	2,19	1,09
keine Sonnenschutzeinrichtung (a	m,s,c=0)	,	,	,	,	,
Holzalufenster 297x193	1	0,50	4,61	0,540	0,66	1,09
automatische Steuerung (a m,s,c : tot: 0,07	= 0,8), Sonnenschutz aussen, s	ehr dunke	l, Lamellenbehäi	nge, Lameller	nwinkel halboff	^r en (45°), g
Holzalufenstertüre 107x223	1	0,50	1,76	0,540	0,84	0,42
keine Sonnenschutzeinrichtung (a	m,s,c=0)					
Holzalufenstertüre 297x223	1	0,50	5,41	0,540	2,58	1,29
keine Sonnenschutzeinrichtung (a	m,s,c=0)					
	9		30,85		8,78	7,34
Süd-Süd-West						
Holzalufenster 107x133	2	0,50	1,96	0.540	0.73	0,46
Manuelle Bedienung (a m,s,c = 0,2 tot: 0,07	-	•	,	- ,	-, -	
Holzalufenster 183x133	1	0,50	1,74	0,540	0,65	0,41
Manuelle Bedienung (a m,s,c = 0,2 tot: 0,07	25), Sonnenschutz aussen, seh		,	e, Lamellenwi		
Holzalufenster 183x133	1	0,50	1,74	0,540	0,65	0,41
Manuelle Bedienung (a m , s , c = 0,2 tot: 0,07	25), Sonnenschutz aussen, seh		,	,		

Gewinne


Kindergarten Enzersdorf - Kindergarten


Transpare	ente Bauteile	Anzahl	Fs -	Summe Ag m2	g -	A trans,c m2	A trans,h m2
	Holzalufenster 297x193	1	0,50	4,61	0,540	2,19	1,09
	keine Sonnenschutzeinrichtung (a m,s,c = 0)						
	Holzalufenstertüre 197x223	1	0,50	3,38	0,540	1,61	0,80
	keine Sonnenschutzeinrichtung (a m,s,c = 0)						
		6		13,46		5,84	3,20
West-N	lord-West						
	Holzalufenster 183x133	1	0,50	1,74	0,540	0,65	0,41
	Manuelle Bedienung (a m,s,c = 0,25), Sonnensch tot: 0,07	iutz aussen, se	enr aunkei, L	.ameiienbenang	e, Lameiienwi	іпкеі паіроттеп	(45°), g
	Holzalufenster 197x193	1	0,50	2,88	0.540	0,41	0,68
	automatische Steuerung (a m,s,c = 0,8), Sonnens	schutz aussen,	•	•	-,	,	
	tot: 0,07				_		
		2		4,63		1,06	1,10
Opake Ba	auteile				Z ON	f op	Fläche
					-	kKh	m2
Nord-N	lord-Ost						
A2	Ziegelwand	wei	ße Oberflä	che	0,68	0,00	42,95
A3	Außenwand Ziegel/Polystyrol	wei	ße Oberflä	che	0,68	0,00	39,82
A1	AW Holzfassade	gra	ue Oberfläd	che	0,68	0,70	42,71
		-					125,49
Ost-Sü	d-Ost						
A2	Ziegelwand	wei	ße Oberflä	che	1,00	0,00	30,20
A3	Außenwand Ziegel/Polystyrol	wei	ße Oberflä	che	1,13	0,00	33,77
A1	AW Holzfassade	gra	ue Oberfläd	che	1,13	0,70	70,10
		-					134,07
Süd-Sü	id-West						
A2	Ziegelwand	wei	ße Oberflä	che	1,13	0,00	18,80
A1	AW Holzfassade	gra	ue Oberfläd	che	1,07	0,70	79,98
							98,78
West-N	lord-West						
A2	Ziegelwand	wei	ße Oberflä	che	0,97	0,00	154,32
A1	AW Holzfassade	gra	ue Oberfläd	che	0,97	0,70	15,95
					·	·	170,28
Horizo	ntal						
D1	Flachdach Neu	grai	ue Oberfläd	che	2,06	0,90	184,40
DAI 1	DAI 01 a Holzsparren-Flachgeneigtes Dach	_	ße Oberflä		2,06	0,00	47,60
							232,00

Heizen	Aw	Qs, h		
	m2	kWh/a		
Nord-Nord-Ost	35,07	2.797		
Ost-Süd-Ost	39,47	5.280		
Süd-Süd-West	17,82	2.558		
West-Nord-West	6,23	629		
	98,59	11.265		

Kühlen	Qs trans, c	Qs opak, c		
	kWh/a	kWh/a		
Nord-Nord-Ost	4.669	53		
Ost-Süd-Ost	6.312	147		
Süd-Süd-West	4.664	158		
West-Nord-West	609	28		
Horizontal	0	685		
	16.256	1.072		

Strahlungsintensitäten

Enzersdorf im Thale, 265 m

	S	SO/SW	O/W	NO/NW	N	Н
	kWh/m2	kWh/m2	kWh/m2	kWh/m2	kWh/m2	kWh/m2
Jan.	34,98	28,14	17,36	12,10	11,57	26,30
Feb.	55,39	45,45	29,82	20,83	19,41	47,34
Mär.	75,63	66,78	50,69	33,79	27,35	80,46
Apr.	80,45	79,30	68,95	51,71	40,22	114,93
Mai	89,18	93,87	90,74	71,97	56,32	156,45
Jun.	78,91	88,38	89,96	75,75	59,97	157,83
Jul.	81,44	91,03	92,62	75,06	59,09	159,70
Aug.	88,50	91,31	82,88	60,40	44,95	140,48
Sep.	81,20	74,35	59,68	43,04	35,22	97,83
Okt.	67,48	56,96	39,62	26,00	22,90	61,91
Nov.	38,45	30,64	18,50	12,72	12,14	28,91
Dez.	29,99	23,57	12,85	8,76	8,37	19,48

DI Sagbauer ArchiPHYSIK - www.archi_| Stadtgemeinde Hollabrunn Hauptplatz 1 2020 Hollabrunn

Beurteilung der Sommertauglichkeit

Gruppe 1

Kindergarten Enzersdorf

Standort Nutzung
Klosterweg 94 Kindergärten

2032 Enzersdorf im Thale Anzahl der Personen im Raum: 27

Verwendung eines Standard Raum-Nutzungsprofils aus ON B 8110-3

Plangrundlagen

31.03.2022 Einr. 02

Klassifizierung des sommerlichen Verhaltens

sehr gut sommertauglich

gut sommertauglich

sommertauglich

Güteklasse "sommertauglich"

Ein Gebäude gilt dann als "sommertauglich", wenn der Außentemperaturverlauf gemäß den landesgesetzlichen Bestimmungen für die Berechnung verwendet wird.

Annahmen zur Berechnung

 Berechnungsgrundlage
 ÖN B 8110-3:2020-06
 Hauptraum

 Bauteile
 ON B 8110-6-1:2019-01-15

 Fenster
 EN ISO 10077-1:2018-02-01

 RLT
 ON H 5057-1:2019-01-15

Tag für die Berechnung des Nachweises

standard 15. Juli
Tagesmittelwert der Aussentemperatur 22,60 °C

Berechnungsvoraussetzung ist, dass keine wie immer gearteten Strömungsbehinderungen wie beispielsweise Insektenschutzgitter oder Vorhänge vorhanden sind. Zur Erreichung der erforderlichen Tag- und Nachtlüftung sind entsprechende Voraussetzungen für eine erhöhte natürliche Belüftung, wie öffenbare Fenster, erforderlichenfalls schalldämmende Lüftungseinrichtungen u. dgl., anzustreben. Zur Sicherstellung eines ausreichenden Luftaustausches bzw. einer ausreichenden Querlüftung zwischen den betrachtn Räumen sind entsprechende planerische Maßnahmen zur Einhaltung der erforderlichen Lüftungsquerschnitte zu setzen. Die Ermittlung selbst bezieht sich auf diesen einen Raum.

Beurteilung der Sommertauglichkeit

Kindergarten Enzersdorf - 1 - Gruppe 1

Nachweis der operativen Temperatur

T _{op, max}	erfüllt	28,84 °C
	Anforderung: T _{op, max, zul} ≤	29,33 °C

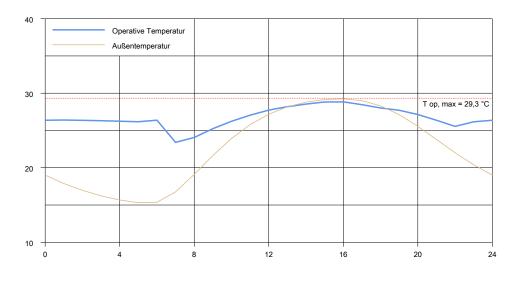
- op, min (Nacint)	T _{op, min (Nacht)}	ohne Anforderung	25,55 ℃
--------------------	------------------------------	------------------	----------------

T_{op, max} maximale operative Temperatur in °C

 $T_{op, max, zul}$ maximal zulässige operative Temperatur (Anforderung laut OIB RL 6:2019) in °C $T_{op, min (Nacht)}$ minimale operative Temperatur im Nachtzeitraum (22:00 Uhr - 6:00 Uhr) in °C

Immissionsflächenbezogene speicherwirksame Masse

27.221,11 kg/m²


38,00 kg/m²

 $\begin{array}{ccc} \text{Immissionsfläche gesamt} & 1,49 \text{ m}^2 \\ \\ \text{Fensterfläche} & 19,06 \text{ m}^2 \\ \\ \text{Immisionsflächenbezogener stündlicher Luftvolumenstrom} & 201,89 \text{ m}^3/(\text{h m}^2) \\ \end{array}$

Report

Tagesgang T a und operative Temperatur

Speichermasse der Einrichtung/Ausstattung

h	Тe	Тор	T air	T rad
	°C	°C	°C	°C
0	19,01	26,37	26,18	26,56
1	17,88	26,40	26,29	26,51
2	16,97	26,36	26,29	26,44
3	16,23	26,31	26,25	26,37
4	15,67	26,24	26,18	26,29
5	15,32	26,17	26,12	26,22
6	15,36	26,38	26,13	26,64
7	16,77	23,40	20,20	26,60
8	19,11	24,06	21,53	26,59
9	21,64	25,24	23,38	27,11
10	23,93	26,23	24,97	27,50
11	25,78	27,05	26,26	27,84
12	27,18	27,73	27,31	28,14
13	28,17	28,19	27,97	28,40
14	28,80	28,54	28,41	28,67
15	29,15	28,82	28,73	28,90
16	29,24	28,84	28,98	28,71
17	29,00	28,46	28,74	28,17
18	28,30	28,02	28,19	27,84
19	27,12	27,71	27,78	27,65
20	25,56	27,14	26,92	27,37
21	23,79	26,37	25,77	26,97
22	22,01	25,55	24,53	26,57
23	20,39	26,16	25,76	26,56

Tagesmittelwert der Aussentemperatur

22,60 °C

Lüftung und Raumlufttechnik

Raumlufttechnik

Fensterlüftung

Luftwechsel (Tag)	1,15	1/h
Luftwechsel (Nacht)	1,15	1/h
Luftwechsel bei Luftdichtigkeitsprüfung (n50)	1,50	1/h

Tagesgang Luftvolumenstrom nicht Standard

Raumgeometrie und Oberflächen

Bezugsfläche 60,12 m²			letto-Raumvolumen 00,56 m ³	Fensteranteil 31,70 %		
Тур	Btl-Nr.	Bezeichnung		A m²	m _{w,B,A} kg/m²	Speichermasse kg
AD	D1	Flachdach Neu		65,00	268,67	17.463,78
AF		Holzalufenster 197x193		7,60	0,00	0,00
AF		Holzalufenster 297x193		5,73	0,00	0,00
AF		Holzalufenster 297x193		5,73	0,00	0,00
Awh	A1	AW Holzfassade		18,30	4,50	82,35
Awh	A1	AW Holzfassade		30,56	4,50	137,52
Awh	A1	AW Holzfassade		30,56	4,50	137,52
Awh	A1	AW Holzfassade		18,30	4,50	82,35
EBu	B1	Bodenplatte Neu		60,12	305,33	18.356,44
IW	I1	Ziegelwand gg. unbeheizt		30,56	66,09	2.019,78
		Einrichtung		60,12	38,00	2.284,56
					Ø 121,97	40.564,30

Bauteile mit solarem Eintrag

Transp. Bauteile Nord-Nord-Ost, 0° (Z ON: 0,66)

Anzahl	Btl-Nr.	Bezeichnung	A _{AL} m²	fg	Höhe m	Breite m	Öff/Kippw. g-Wert m	Fsc	g tot
1x		Holzalufenster 297x193	5,73	0,81	1,83	2,87	G 0,54	1,00	0,19
Transp.	Bauteile	Ost-Süd-Ost, 0° (Z ON: 1,13)							
Anzahl	Btl-Nr.	Bezeichnung	A _{AL} m²	fg	Höhe m	Breite m	Öff/Kippw. g-Wert m	Fsc	g tot
2x		Holzalufenster 197x193	7,60	0,76	1,83	1,87	G 0,54	1,00	0,19
Transp.	Bauteile	Süd-Süd-West, 0° (Z ON: 1,06)							
Anzahl	Btl-Nr.	Bezeichnung	A _{AL} m²	fg	Höhe	Breite	11 0	Fsc	g tot
1x	Du-141.	Holzalufenster 297x193	5,73	0,81	1,83	2,87	m G 0,54	1,00	0,19

Verschattung und Sonnenschutz

Transp. Bauteile Nord-Nord-Ost, 0°

			Sonnenschutz			Verschattung		
Btl-Nr.	Bezeichnung	ε	v7h		Fh	Fo	Ff	
	Holzalufenster 297x193	1,50	nein	Sonnenschutz aussen, hell,	1,00	1,00	1,00	
				Lamellenbehänge, Lamellen geöffnet				
				(90°)				

Beurteilung der Sommertauglichkeit

Kindergarten Enzersdorf - 1 - Gruppe 1

Transp.	Bauteile	Ost-Süd-Ost.	0°
---------	----------	--------------	----

				Sonnenschutz	Ve	ung	
Btl-Nr.	Bezeichnung	3	v7h		Fh	Fo	Ff
	Holzalufenster 197x193	1,50	nein	Sonnenschutz aussen, hell, Lamellenbehänge, Lamellen geöffnet (90°)	1,00	1,00	1,00

Transp. Bauteile Süd-Süd-West, 0°

				Sonnenschutz	Ve	erschattu	ıng
Btl-Nr.	Bezeichnung	3	v7h		Fh	Fo	Ff
	Holzalufenster 297x193	1,50	nein	Sonnenschutz aussen, hell,	1,00	1,00	1,00
				Lamellenbehänge, Lamellen geöffnet			
				(90°)			
Legende :	zu den Tabellen der transp. Bauteile						
Öffnungsty	p:			Sonnenschutz			
	V Cokingt						

 Offnungstyp:
 Sonnenschutz

 O ... Offen
 K ... Gekippt
 v7h ... vor 7:00 Uhr

 G ... Geschlossen
 N ... Nicht öffenbar